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Summary

A formula for the computation of the vertical velocity compo-
nent on all sides of an airplane is deduced and disouésed. The
formation is of value for the interpretdtion of such free flight
tests where two airplanes fly albngside each other to facilitate

observations

In certain kinds of free flight experiments with airplanes,
a second airplane is used for the dbservation of the airplane to
be tested. For instance, during some experiments of the flight
section of the Natiqnal Advisory Committee for Aeronautics, two
airplanes were flown side by side. A cylindrical weather vane was
suspended under one of the airplanes. An obéerver in‘the second
airplane took photographic pictures under different conditions of
flight in order to determine the angle of attack. The distance

of the two airplanes was sometimes as low as one wing span.

i
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For the interpretation of such tests it is desirable to be
informed on the vertical velocity component of the air caused by
the observing airplane in the region occupied by the airplane to
be observed. This information is contained implicitly in Refer-
ence 1. TFor greater convenience I proceedkto lay down in this
Note the direct way to obtain this downwacgh.

The problem is, then; to determine the downwash sidewisc of
of an airplane in a moderate distance therefrom. The velocity
distribution in the immediate neighborhood is affected by all de-
tails of the different parts of the airplane and its exact compu-
tation is near to impoesible. At a great distance, on the other
hand, the air velocity caused by a passing airplane becomes negli-
gible. This appeals immediately to the common sense, and the re~
mark scems almost obvious and trivial. It 1s not, however, as
the same doecs not hold for the motion of the air in rear of the
airplane. The wake of the airplane is maintalned over quife con—
siderable distances, it can be neglected only at much greater
distances than the disturbance created at the sides, and on top
and bottom.

An estimate of the downwash at the sides of the airplane in
moderate distance will be obtained by substituting a monoplane of
about equal span for the biplane cellule (if any) and by taking
into consideration the two-dimensional flow caused by a lifting
wing and discussed in Reference 1, Section III. It is shown there

that a two-dimensional flow is gradually established by the wings,
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and that in the vertical plane through the wings the same config-
uration of flow, but of half of the final ragnitude in strength,
will be found. For the purpose of this Hote, it is sufficient to
consider only the main term of this flow, — when expanded into a
Fourier's Serics — having reference to an elliptical distribution
of the 1ift. This flow ig of vanighing intensity at greatvdis~
tances from a straight line, representing the span. At'thé points
of this span, the vertical velocity is constant, say, equal to u,.
Siﬁoe the apparent mass of a gtraight line bf the length 2a in

a two-dimensional flow is equal to an (that is, when wmoving lat-
erally) and since the momentum of the final flow set up per unit

of time cquals the 1ift created, u, can be bomputed from the
equation
a*n Vp u, =1L

L
a®n VvV p

This is the final downwash far behind the wing. According to the
remark just made the downwash at the points of the wing is half

that magnitude.
T 4@3: v P (3)
’ 2
The problem is now reduccd to. the investigation of the poten—
tial flow around a gtraight line of the length 3a moving later—
aliy with the velocity u, in a perfect fluld otherwise at rest.

The complex potential function cf this flow according to equation
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38, of Reference 1, 1s
’ - [:3:*/< JORY 9
Iin which
= half span
= total 1ift
velocity of flight

= rmags density of air
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is a constant, the magnitude of which
will be determined immediately.
The velocity distribution is then obtained from
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where only the last term in the braokét is variable. The vertical
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velocity component is the 1mag1nary paxt of (4), with reversed sign.
At the points of the span, the seeond term of the span becomes
imaginary and hence, doeg not furnlsh a contribution to the down-

wash. A% these points, equation (4) gives thus
U = c .
a

This constant downwash agrees with the one sgpecified in equation

(2), if C = ———L-—-5 . &t the other points of the straight line
4 a7V =
2 ,
containing the span, the vertical velocity component is directed up-

wards. The square root in (4) is then real, and the upwash becomes

R
a a«/ x® - o
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where x denotes the distance from the middle of the span. At
X = o, u becomes zero.

At all other points of the plane, equation (4) furnishes the
negative or positive downwash. z = x + iy has %o be inserted,
and the expression (4) has to be reduced to the form v + ui.

This can always be done Qasily by fundamental operations. The
real and the imaginary parts give, then, the two velocity compo -
ents desired.

It is too cumbersome, and unpractical, to indicate the opera—
tion to be performed in a formula containing the two space varia-
bles x and y. It is more convenient to use an expansion of the
downwash éompdnent, in a Fourier's Series, which rapidly converges
at the region congidered. I proceed to develop this Fourier's
Series.

The variable term in equation (4) is
~1/2

z 1 (1 - (a\ N
. a a Z/ J _ (5)
2\
av/(E/_71 /]'" ( a
ey
Now the binominal expansion of (1 - (%/ ; gives
~1/2 _1Vo 3N 1V_3N 5N
(1 - (&Y = 14k (?«.\2+‘( 3-’(:2_1 (@.\4_ ( 3/ 2s/327 (a¥
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Introducing now, polar coordinates

x° + y® = R®, c¢os0Q =

2

el

the redl part of (8) becomes, (according to Moivre!'s formula)
, a2 : 4
1+ 05000 (2) cos 29 + 0.5750 (&) cos 49 +
+ 0.3125 (%f cos 69 + 0.2735 (2 cos 8y + (7)

Hence +the downwash becomes

. 2 4
w=—L 50,5000 (2} cos 20 + 0.5750 (&) cos 49 +
4T V = R/ \R/
-
Ay A
+0.3125 (&) cos 69 + 0.3735 (&) cos 89 + ....]
(8)

This is the desired formula.

The figure shows the meaning of R and ®. R is the distance of
the point from the middle of the span. @ is the angle betwcen

the radius R (connecting the middle of the span and the point
with the span)s
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Numerical Examplecs

Let the welght of an airplane be L = 3500 1b., and its span
2a be 36 ft. The momentary velocity may be 80 mi./hr. The con-
ditions are so chosen as to give comparatively appreciable down-
wash..

Consider first the point in the horizontal of the wing, one
span from the tip, for which R = 3a and ¢ = 0. The expression

in front of the bracket is

L = 2800 X 390 _ 4.3 pi./nr.

4£nv§ 26 T X 80

The bracket is

0.5 ., 0.375 . 0.3135 o
4 + + . = 0.055
3 3" 3° +0. 005
+0. 000

0. 060

Hence the negative downwash at the point is 0.06 X 4.2 = 0.35
mi./hr. and the angle of downwash = %22 = 0,003 = rd. 1/6 of

one degree. Repeat the same computation for a point in the verti-
cal middle plane of the airplane one span on top of the wing,

that is, 9@ = 90° and R = 3a. The conditions of flight might

be the same, giving again 0.35 mi./hr. as factor in front of the

bracket« The latter now becomes

0.5 , 0s375 _ 0.313 , 0.873 , , . _ ~0.135 + 0.034
- > 84 28 o8 -0.005 + 0.001
—‘Ool mi-/hl‘.
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The anglc of downwash = - Qé% ~ 7% of one degrce.

It appears from these examples that the angle of downwash
decreases rapidly with the distance from the airplanc. For prac—
tical cases it can probably always be computed exactly enough by

using only the first term in the bracket of the final result.
Reference.

1. Max M. Munk: Elements of the Wing Scction Theory and of the
Wing Theory. N.A.C.A. Technical Report No. 191.
1924.



